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The transport theory of sound particles is applied to the sound field modeling in architectural acoustics. A
theoretical description is proposed for empty enclosures with complex boundary conditions, including both
specular and diffuse reflections. As an example, the model is applied to street canyons. Therefore, an
asymptotic approach is proposed to reduce the transport equation to a diffusion equation defined by only one
parameter, the diffusion coefficient. This coefficient is a function of the reflection law of the building façades,
the ratio of specular and diffuse reflections, as well as the street width. The model is then compared to Monte
Carlo simulations of the propagation of sound particles in complex enclosures. As expected by the asymptotic
approach, the model is in agreement with numerical results, but mainly for small street width and very diffuse
reflections. Finally, a discussion is proposed in the conclusion, on the model’s capabilities.
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I. INTRODUCTION

Sound field modeling in architectural acoustics has at-
tracted considerable attention in the recent years. In both
room acoustics and urban acoustics, several models have
been derived to accurately predict the sound level and the
sound decay, as well as many others acoustical parameters.
The models take into account many effects, such as, specular
reflection on boundaries, wall absorption, diffraction, diffu-
sion and absorption by fitting objects, atmospheric attenua-
tion, etc. More recently, research has been focussed on the
effects of diffusely reflecting boundaries, showing that the
scattering of sound by surface irregularities may have a sig-
nificant influence on the sound field energy distribution and
decay �1–3�, as well as on the sound perception �4�. Conse-
quently, it becomes difficult to develop a model that takes
into account all the complex phenomena occurring in archi-
tectural acoustics.

Most of the time, analytical and numerical approaches
based on the wave equation cannot be applied. Analytical
solutions in terms of series expansions of normal modes
�5–8�, as well as numerical solutions based on finite and
boundary elements methods �9� can only be achieved for
simple enclosure shapes, uniform wall responses, and low
frequencies �i.e., smaller than about one-third of the charac-
teristic enclosure dimension� �10,11�.

The classical theory of reverberation �12� widely applied
in room acoustics is restricted to low absorption, quasicubic
or ergodic enclosures without openings �13,14�.

Standard image-source �1,2,15–17� and ray-tracing
�18–22� methods are reduced to simple geometries, particu-
larly ones that are polyhedric. By design, these methods are

well adapted for specular reflections, but not for diffuse re-
flections. In addition, for complex shaped enclosures, the
image-source and the ray-tracing methods imply extremely
long calculation times, which limit the calculation of im-
pulses responses to small order reflections. More recently,
new techniques have been developed to introduce the effects
of diffuse reflection in these standard methods, for instance,
by combining a beam-tracing and a radiosity method
�10,22–25� or by randomizing the direction of the reflected
ray �26� in ray-tracing simulations. However, most of the
time, the reflected energy distribution is assumed to follow
Lambert’s law �i.e., a cosinusoidal law�, which has no physi-
cal reality �27�. Indeed, recent studies have shown that the
boundary irregularities and protrusions may create complex
reflection patterns, very different from Lambert’s law �28�.

Some statistical models have also been derived to predict
the sound field in fitted rooms �29–33�. By using the concept
of sound particles, and by considering a Markov or a diffu-
sion process, authors have derived analytical expressions to
predict the energy distribution in complex enclosures. How-
ever, diffuse reflections are taken into account by the same
methods as discussed above.

Although several approaches may be considered to pre-
dict the sound field distribution in complex enclosures, only
a few can take into account complex boundary conditions,
including openings and diffuse reflections. Moreover, one
can remark that each model can only be applied to one con-
figuration. For example, investigations will be different in
low halls �34�, in corridors �35–37�, in reverberation cham-
bers �38,39�, or in fitted rooms �40,41�.

In this paper, a mathematical formulation is proposed to
model the sound field encountered in architectural acoustics
based on the concept of sound particles. Theoretically, all
effects occurring during sound propagation �specular and dif-
fuse reflections, absorption by walls and openings, diffusion*Electronic address: judicael.picaut@lcpc.fr
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by fitting objects, atmospheric attenuation, etc.� can be intro-
duced analytically. For the moment, due to the mathematical
complexity, this approach has been restricted to sound propa-
gation in empty enclosures, with diffusely reflecting bound-
aries, and without atmospheric attenuation. The model is
based on the concept of sound particles, particularly on the
equivalence between the sound energy density and the single
particle distribution function �SPDF� in a complex enclosure.
Using this approach, the sound energy density in the enclo-
sure is simply a solution of a transport equation with well-
defined boundary conditions. As a first application, the
model is applied to the sound propagation in a street canyon.

The concept of sound particles and the single particle dis-
tribution function are presented in Sec. II. The transport
equation and the boundary equations are then derived in Sec.
III, and applied to a street canyon in Sec. IV. Finally, the
model is compared to Monte Carlo simulations in Sec. V.

II. SOUND PARTICLE FORMALISM

A. Energy representation of the reverberant field

The total acoustic field can be split in two parts, the direct
sound field and the reverberant sound field. The direct sound
field can be easily found. The reverberant sound field, which
is the object of this paper, is the result of a complex energy
mixing �1,42� due to multiple specular reflections, diffrac-
tion, and scattering occurring on the boundaries and in the
enclosure. In the frequency range usually encounted in archi-
tectural acoustics �i.e., 100–5000 Hz�, the effects of phase
cancellation and addition that produce the classical interfer-
ences are averaged �43� and sound sources may be consid-
ered uncorrelated. Thus, the total energy at a receiver is
equal to the sum of each energy contribution. Accordingly, a
reverberant sound field can be modelled by using an energy
approach. Despite neglecting the wave behavior of the sound
field, energy models can provide satisfactory results such as
reverberation times and sound attenuation �10�.

Most of the energy models used in architectural acoustics
are based on geometrical acoustic assumptions, which as-
sume that the sound propagation may be represented by
sound rays �12� propagating along straight lines between two
collisions with the enclosure boundaries and the obstacles in
the medium. Then, the total sound energy at a receiver lo-
cated in an enclosure is calculated by summing all the sound
rays crossing the receiver volume. In order to take the geo-
metrical spreading due to the expansion of the wave fronts
into account, the energy of each sound ray decreases in-
versely as the square of the distance from the source.

Another approach is to consider a sound ray as the path of
an infinitesimal entity, named sound particle or phonon
�19,44,45�, with a constant energy. In this way, as discussed
by Joyce �44,46�, geometrical acoustics is a special case of
the classical-particle dynamic. The main interest of this ap-
proach, is that the reverberant sound field may be seen as a
gas of sound particles. Therefore, the classical formulation of
gas theory can then be applied to acoustical problems.

B. Sound particle concept

A sound particle is defined as a classical point particle by
its elementary energy e, its position x, and its velocity v,

whose norm �v� is equal to the sound velocity c �Fig. 1�.
Space and velocity domains are defined, respectively, on the
sets X�R3 and V� �−c ,c�� �−c ,c�� �−c ,c�. Particle mo-
tion is characterized by its position vector x and its velocity
vector v,

x = �x,y,z� with �x,y,z� � X , �1�

v = �u,v,w� with �u,v,w� � V .

The boundary of the subset X is noted �X. It corresponds to
the geometrical boundary of the propagation medium.

Interactions and collisions between particles are ne-
glected. A phonon obeys the laws of classical mechanics
based on the Hamilton stationary action principle �47� and,
in this case, undergoes a straight line until its impact with the
obstacles or walls of the enclosure. During a collision with a
scattering object or with a surface, the velocity direction is
instantaneously deflected �Fig. 1�.

C. The single particle distribution function

A particular state of a system with N particles is described
by 3N coordinates of position �x1 ,x2 ,x3 ,… ,xN� and 3N co-
ordinates of velocity �v1 ,v2 ,v3 ,… ,vN�. This state is repre-
sented by a point in a 6N dimension phase space � �48�. If,
at a given time t, it was possible to know exactly each par-
ticle position and velocity, it would be then possible to pre-
dict their position and velocity at a time t+dt. However, the
number of sound particles being very large, the practical
implementation is very difficult. As a consequence, the prob-
lem must be approached in a probabilistic way.

It is assumed that mutual particle interactions are not
taken into account. Moreover, the large energy mixing due to
scattering effects is sufficient to satisfy the ergodicity crite-
rion. Hence, the description of the N particles system can be
reduced to the knowledge of a fictive single particle system
�49�, in a six dimensional phase space �, defined by the
single particle distribution function f�x ,v , t� �49,50�. This
function characterizes the statistical behavior of a sound par-
ticle, and

f�x,v,t�dx dv, x � X, v � V , �2�

represents the amount of particles, at time t, with velocity v
to within about dv, in an elementary volume dx located at x
�Fig. 2�.

FIG. 1. Sound particle propagation in a semiopened and empty
enclosure. x and v are the position and the velocity of the sound
particle, respectively.
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The local density of sound particles is defined by the in-
tegration of the SPDF over the velocity space,

n�x,t� = �
v

f�x,v,t�dv, x � X, v � V . �3�

The sound energy density w�x , t� is obtained by multiplying
the local density by the elementary energy of the sound par-
ticles

w�x,t� = en�x,t�, x � X, v � V . �4�

The local particle flow, which represents the number of par-
ticles crossing a unit area per unit of time at x and time t, is
the integration over the velocity space of the product of the
velocity and the SPDF, defined by

J�x,t� = �
v

vf�x,v,t�dv, x � X, v � V . �5�

In the same way, the local sound energy flow at x and time t
is given by

E�x,t� = e�
v

vf�x,v,t�dv, x � X, v � V . �6�

III. SOUND PARTICLE TRANSPORT THEORY

A. Transport equation

Since collisions of phonons take place on the boundaries
only, the spatial and the temporal evolution of the sound
particle density in the enclosure is similar to the evolution of
the molecular density in a rarefied gas or Knudsen gas �51�.
The main equation of the model, can be derived from trans-
port theory �49� to give

� f

�t
+ v · �xf = 0, x � X, v � V , �7�

where �x represents the spatial derivative. This is the trans-
port equation of free molecular flow �52�, also called Liou-
ville equation, expressing the variation of the particle density
during dt according to a transport phenomenon �operator
v ·�x acting on f�x ,v , t��.

B. Boundary conditions

Typically, surfaces have considerable irregularities due to
window recesses, decorative structures, doorways, ledges,
seats, columns, etc. According to the frequency and the size
of wall protrusions, reflections may or may not be specular.
Whenever wavelengths are much smaller than the size of

FIG. 3. Schematic representation of two-dimensional reflection
laws R�x ,v ,v���R�x ,� ,���. � and �� are the reflected and inci-
dent angles, respectively. v and v� are the reflected and incident
velocity, respectively. v* is the particular incident velocity com-
bined with a specular reflection. �a� Specular reflection ��=���, �b�
uniform reflection law �i.e., R�x ,� ,��� is constant�, �c� Lambert’s
law �i.e., R�x ,� ,��� is proportional to cos ��, �d� complex reflec-
tion law. n is the outgoing normal to the façades.

FIG. 2. Representation of dx and dv.
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irregularities or than the dimensions of the enclosure, reflec-
tions are specular. Nevertheless, when the wavelength is of
the order of wall protrusion size, scattering effects are nu-
merous, producing a diffuse reflection. In architectural
acoustics, the wide frequency range encountered implies
most of the time a mix of both reflections. Moreover, wall
absorption must be also considered.

First of all, it is convenient to introduce the outward unit
normal n to the boundary in x��X �Fig. 3�. Let us define by
�± the points �x ,v� of the phase space � that satisfy the
relation

�±:��x,v�/x � �X,0 � ± n · v	 . �8�

The restriction of f to the set �+ ��−, respectively� is noted
below f+ �f−, respectively�.

1. Wall absorption

The absorption coefficient ��x� is defined for x��X, as
the probability that a sound particle is absorbed by the
boundary. It varies from 0, for total reflection, to 1 for total
absorption.

2. The accommodation coefficient

In order to take both reflections into account, the accom-
modation coefficient d�x� �for x��X� can be introduced.
This coefficient is representative of the boundary morphol-
ogy, and expresses the part of nonspecular �i.e., diffuse� and
specular reflection. By definition, it varies from 0 for a dif-
fuse reflection, to 1 for a full specular reflection. This accom-
modation coefficient can be in keeping with the usual diffu-
sion coefficient �=1−d, defined in room acoustics
�2,9,53,54�.

3. Specular reflection

The specular reflection can be considered in a determin-
istic way. Indeed, the knowledge of the incidence angle ��
gives the angle of reflection according to the Snell-Descartes
laws. The relationship between the reflected velocity v and

the incident velocity v* of a sound particle at the boundary
with normal n is then given by �Fig. 3�a��

v* = v − 2�n · v�n . �9�

4. Diffuse reflection

As introduced above, diffuse reflections may have signifi-
cant effects on the sound field decay and distribution in an
enclosure. In order to take these effects into account, some
authors have proposed to use the uniform reflection law �Fig.
3�b�� which distributes the sound energy in all directions
with the same probability, or Lambert’s law �Fig. 3�c�� favor-
ing the normal direction. However, although both laws are
used in computer models, there is no real evidence of the
physical reality of these laws in architectural acoustics.

In the present approach, the scattering effects on the
boundaries are modelled by considering an arbitrary reflec-
tion law R�x ,v ,v�� for x��X �Fig. 3�d��. This reflection
law represents the probability that a sound particle with an
incident velocity v� leaves the boundary at position x��X
with a velocity v after reflection. This function is normalized
to unity,

�
�+

R�x,v,v��dv� = 1, x � �X, v � V , �10�

and must satisfy the reciprocity relation,

�
�−

R�x,v,v��dv = 1, x � �X, v � V , �11�

which expresses the flow conservation on the boundaries.
This reflection law is equivalent to the scattering kernel de-
fined in gas theory �51,55�.

5. Flow conservation at boundaries

The boundary conditions express the reflected particle
flow as a function of the incident particle flow. By consider-
ing the part of specularly and diffusely reflected sound par-
ticles, the flow conservation is written

�12�

for x��X and v��−. The left-hand side of Eq. �12� repre-
sents the reflected flow. The right-hand side, weighted by the
reflection coefficient �1−��x��, represents the specular flow
�first term� and the diffuse flow �second term�.

C. Application

The application of the transport model to a specific prob-
lem, like sound propagation in rooms or streets, requires

solving the transport equation �7� with the boundary condi-
tions defined by Eq. �12�. However, presently there is still no
exact analytical solution for such a system of equations, even
for simple geometries. Conversely, asymptotic solutions may
be found in some cases, for example, when a specific dimen-
sion is larger than the others, like in corridors, street can-
yons, and low halls.

Thus, the main difficulty lies first, in the choice of the
assumptions that are needed to simplify the geometry of the
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problem, and second, in the choice of the asymptotic ap-
proach that must be used in order to give simple and adapted
solutions. In the related literature, some asymptotic ap-
proaches are proposed. In particular, one can mention the
recent studies by Babovsky et al. �56� and Börgers et al.
�57�, applied to the diffusion approximation for a Knudsen
gas in a thin domain with accommodation on the boundary.
Such approaches seem well adapted to sound propagation
modeling in corridors and in streets, for which the length is
larger than the width or the height. As an example, an appli-
cation to sound propagation in a street canyon is detailed in
the next section.

IV. APPLICATION TO SOUND PROPAGATION IN A
STREET CANYON

A. Introduction

Noise is a major problem for people living in urban areas.
Consequently, many mathematical and numerical models
have been developed to predict sound propagation in streets,
using, for example, the image-source methods, the modal
approaches, or the classical theory of reverberation. How-
ever, because of the complexity of the façade effects, these
models are still not satisfactory. Conversely, the use of the
transport model seems to be a solution for sound propagation
modeling in urban areas. The study of street canyons, instead
of “regular” streets, is not really a restriction. Noise occurs in
strongly built-up urban areas, where the sound activity is
significant, like in the city center. In such places, streets and
boulevards are very numerous and buildings are very high.
As a first approximation, the propagation medium can then
be compared to a network of street canyons.

B. The street canyon

Let us now consider a street canyon, of width 2L, height
ly and length lx �Fig. 4�a��. It is assumed that the width is
smaller than the size of the building façades �i.e., 2L	 ly and
2L	 lx� and, thus, the street may be characterized by an in-
finite length and height. In addition, recent studies have
shown that typical urban vehicles, like cars and motorcycles,
may be modelled as point sound sources, located a few cen-
timeters above the ground �58�. For this reason, in the
present approach, the sound source S is assumed to be on the
pavement. To simplify the following developments, the
sound source �defined by a sound power P� is located in the
middle of the street section. The pavement is assumed to be
a perfectly reflecting plane �i.e., a mirror plane�. Conversely,
it is assumed that the building façades produce diffuse and
specular reflections. In both cases, sound absorption is as-
sumed very low �59,60� and can be neglected.

According to the image-source theory, the pavement is a
mirror plane for the sound source and the building façades. It
is assumed that the sound source S and its image are merged
into one virtual source S� with a sound power 2P. Then, the
problem of sound propagation in the street canyon may be
compared to the propagation of sound between two infinite
and parallel diffusely reflecting surfaces �Fig. 4�b��. The
transport problem is then reduced to the propagation of

sound particles in a narrow propagation medium, delimited
by two diffusely parallel planes.

Following Sec. III B, boundary reflections on the parallel
planes �i.e., the building façades� are expressed by the ac-
commodation coefficient d and the diffuse reflection law
R�x ,v ,v��. Although, recent work has been carried out to
characterize diffusely reflecting surfaces �61�, there is still no
satisfactory and accurate results. At the present time, analyti-
cal expressions of reflection laws are not available, apart
from the uniform reflection law and Lambert’s law. In this
paper, the reflection law is considered a function of the nor-
mal component of the velocity 
w
 �Fig. 5�, and is indepen-
dent of the space variable x,

R�v,v�� 
 
w
k. �13�

It may be noted that for k=0 and k=1, this expression gives
the uniform reflection law and Lambert’s law, respectively.
The variation of the parameter k allows to change the behav-
ior of the sound reflection from a uniform diffusion to ex-
tremely concentrated diffusion around the normal to the

FIG. 4. Propagation medium modeling, �a� street with a sound
source S standing on the ground; �b� street modeling as two infinite
and parallel planes with a virtual source S�. The street width is 2L.
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façade. Last, in this paper, the diffuse reflection law and the
accommodation coefficient are assumed to be uniform and
equal on both building façades.

C. Asymptotic development

The asymptotic approach detailed in this section is taken
from the recent study by Börgers et al. �57� and is based on
a diffusion approximation resulting from simple geometrical
considerations. Figure 6 shows the propagation of a sound
particle between two planes. At each collision with one of
the planes, the direction of the velocity vector is changed. If
the mean free path of the sound particle is large, this change
of direction appears after a long propagation time. This is in
agreement with a transport process. However, the smaller the
distance between the planes, the smaller is the mean free
path and faster is the change of direction. Thus, in a very
narrow medium, the particle will experience more and more
collisions leading to a rapid variation of the velocity vector

direction �Fig. 7�. This last behavior is characteristic of a
diffusion process. Hence, the diffusion process may be con-
sidered as the limit of the transport process in a narrow me-
dium. The aim of the asymptotic development is then to
develop the transport equation in order to reach a diffusion
equation.

1. Geometry

In this section, the asymptotical approach is developed in
two dimensions in order to simplify the mathematical ex-
pressions. However, it can be easily extended to three dimen-
sions. Finally results will be given for both cases.

In two dimensions, the problem is reduced to the propa-
gation of sound particles between two parallel lines �Fig. 8�.
Mathematically, the space domain is defined on the set Y
�R2 subdivided in two sets X and Z such that Y =X�Z, with
X�R and Z� �−L ,L�. The propagation of a sound particle
is entirely defined by the position vector x and the velocity
vector v, with

x = �x,z� with x � X,z � Z ,

v = �v,w� with �v,w� � �− c,c� � �− c,c� = V . �14�

The boundary of the subset Z is noted �Z. Therefore, the
boundary of the set Y noted �Y =�Z�X, represents the geo-
metrical boundaries of the propagation medium, that is the
two lines at z= +L and z=−L.

2. Change of variables

In order to reach a diffusion process, it is necessary to
bring the building façades closer, or equivalently, to rescale
the time variable to increase the number of collisions by unit
time. This can be done by introducing a small parameter � in
the transport equation and afterwards, to study its behavior
as � tends to zero. The time variable t is then rescaled as t /�,
while the space coordinate z is expanded as �z. Letting �

FIG. 5. Two-dimensional polar diagrams for 
w
k reflection laws
with k=1, 2,…,5.

FIG. 6. �Color online� �a� 2D propagation of a single particle
between two parallel planes �i.e., z=−5 and z= +5� with 2L
=10 m; �b� temporal variation of the angle � between the plane z
=−5 and the velocity vector.

FIG. 7. �Color online� �a� 2D propagation of a single particle
between two parallel planes �i.e., z=−2 and z= +2� with 2L=4 m;
�b� temporal variation of the angle � between the plane z=−2 and
the velocity vector.
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tend to zero allows to simultaneously obtain a time expan-
sion and a spatial reduction, leading, respectively, to a longer
observation of the particle transport and to an increase in the
number of collisions. The modified transport equation is now
written

� f�

�t
+

1

�
v

� f�

�x
+

w

�2

� f�

�z
= 0, �15�

for �x ,z��Y, �v ,w��V and where f��x ,z ,v ,w , t�
= f�x ,�z ,v ,w , t /��.

The boundary conditions are unchanged, since they act on
the velocity variables only, and not on z or t,


w
f�
−�x,z,v,w,t� = d
w
f�

+�x,z,v*,w*,t� + �1 − d�

� �
�+

R�z,v,v��

�
w�
f�
+�x,z,v�,w�,t�dv�dw� �16�

for �x ,z���Y, v��−, and where the absorption by the pave-
ment and the building façades has been neglected. The initial
condition ensures the conservation of the number of sound
particles in the medium,

/
f��x,v,t�dx dv =

/
F�x,v,0�dx dv = N . �17�

3. Variable separation

Considering the last change of variables, the transport
equation is now written as

− ���
� f�

�t
+ v

� f�

�x
� = w

� f�

�z
. �18�

The next step of the mathematical development is to express
the distribution function as the product of two functions. We
consider that the function f��x ,z ,v ,w , t� converges to a new
function F�x ,z ,v ,w , t� when � tends to zero, such as

lim
�→0

− ���
� f�

�t
+ v

� f�

�x
� = lim

�→0
w

� f�

�z
�19a�

=w
�

�z
F�x,z,v,w,t�

�19b�

=0. �19c�

In Eq. �19a�, variables x and t are only parameters. Thus,
it is possible to realize a separation of variables and, after-
wards, to express the function F�x ,z ,v ,w , t� as the product
of two functions,

F�x,z,v,w,t� = q�x,t� � ��z,v,w� , �20�

where ��z ,v ,w� is positive, normalized to unity,




��z,v,w�dz dv dw = 1, �21�

and from �19a�, verifies

w
�

�z
��z,v,w� = 0. �22�

This last result means that the particle density is constant
between the planes �i.e., along the z direction�. The sound
particle density varies along the x direction only, according
to the function q�x , t�. Following this approach, the sound
energy in a street canyon is constant along a transversal line
of the street. This is in agreement with recent experimental
results �67� and justifies a common hypothesis made in most
cases of sound propagation in long spaces, like corridors and
streets �59�.

4. The diffusion equation

As suggested before, the diffusion process is a “macro-
scopic” view of the particle transport problem when the
number of collisions per unit of time increases. In order to
reach a diffusion process, it is necessary to consider “macro-
scopic” variables. As an example, the average local density
of sound particles may be considered. It corresponds to the
integration of the distribution function over the velocity
space �v ,w� and the width z, and is simply equal to q�x , t�
�from Eqs. �20� and �21��:




 f��x,z,v,w,t�dz dv dw = q�x,t� . �23�

In order to express the transport problem in a macroscopic
view, the transport equation can be integrated in the same
way, to give

FIG. 8. Two-dimensional representation of the street, with a
sound source S� located in the middle of the street.
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� f�

�t
dz dv dw +

1

�



 v

� f�

�x
dz dv dw

= −
1

�2 


 w
� f�

�z
dz dv dw . �24�

Taking the limit of Eq. �24�, as � tends to zero, yields

�

�t
q�x,t� +

�

�x
lim
�→0

1

�



 vf�dz dv dw = 0, �25�

since the right-hand side is equal to zero due to the boundary
conditions. To determine the second term on the left-hand
side, a new function D*�z ,v ,w� is introduced,

− w
�

�z
D*�z,v,w� = v , �26�

where the symbol � represents the conjugate of the function
D�z ,v ,w�, defined by

w
�

�z
D�z,v,w� = v��z,v,w� . �27�

This function D�z ,v ,w� has no physical meaning, but is an
essential mathematical tool, introduced to reach a diffusion
equation, and later, to derive the diffusion coefficient. After
some mathematical developments �56,57,62�, the second
term on the left-hand side of Eq. �25� may be written as

lim
�→0

1

�



 vf��x,z,v,w,t�dz dv dw

= −
�

�x
q�x,t� 


 D*v��z,v,w�dz dv dw . �28�

Introducing Eq. �28� in Eq. �25�, the final expression of the
macroscopic transport problem gives the one-dimensional
diffusion equation �for the two-dimensional problem�,

�

�t
q�x,t� − K �2

�x2q�x,t� = 0, �29�

with the diffusion coefficient

K = 


 D*�z,v,w�v ��z,v,w�dz dv dw , �30a�

= 


 D�z,v,w�v dz dv dw . �30b�

The same analytical approach applied to the three-
dimensional problem leads to the two-dimensional diffusion
equation,

�

�t
q�x,y,t� − �Kuu

�2

�x2 + Kuv
�2

�x � y
+ Kvu

�2

�y � x

+ Kvv
�2

�y2�q�x,y,t� = 0, �31�

with

Kuu = 



 Du�z,u,v,w�u dz du dv dw , �32�

Kvv = 



 Dv�z,u,v,w�v dz du dv dw , �33�

Kuv = 



 Du�z,u,v,w�v dz du dv dw , �34�

Kvu = 



 Dv�z,u,v,w�u dz du dv dw , �35�

where Du and Dv are defined by

w
�

�z
Du�z,u,v,w� = u ��z,u,v,w� �36�

and

w
�

�z
Dv�z,u,v,w� = v ��z,u,v,w� . �37�

This asymptotic approach shows that the sound particle
transport process, with complex boundaries conditions, can
be reduced to a simple diffusion equation between the paral-
lel planes, defined by only one parameter, the diffusion co-
efficient. From an acoustical point of view, this result sug-
gests that the sound energy density along a street canyon
with partially diffusely reflecting boundaries, is a solution of
the diffusion equation. The diffuse behavior of the sound
energy is then characterized by the diffusion coefficient, de-
fined by Eq. �30a� in two dimensions �2D�, or by Eqs. �32�
and �35� in three dimensions �3D�. This result is in agree-
ment with previous work �63,64�, but gives now a math-
ematical justification as well as an analytical expression for
the diffusion coefficient. At this point, it is now necessary to
determine the diffusion coefficient as a function of the
boundary conditions. This is presented in the next paragraph.

5. The diffusion coefficient

In order to calculate the diffusion coefficient by Eq. �30a�,
the first step is to find the analytical expression of ��z ,v ,w�.
Then, in the second step, an analytical expression of
D�z ,v ,w� can be given. In both cases, this requires to con-
sider the real reflection law of the building façades defined
by Eq. �13�. However, the convergence of this asymptotic
approach requires that k is greater than 1. As an example, the
next developments are proposed for k=2, but the analytical
expression of the diffusion coefficient can be found for any
k
1.

a. Expression of the reflection law for k=2.
For k=2, the reflection law is written

R�v,v�� = A
w
2, �38�

where A is a normalization coefficient. Introducing the polar
coordinates

v = c cos � ,

w = c sin � ,

dv dw = c d� , �39�

the normalization condition gives,

�
0

�

R��,���c d� = �
0

�

A c2 sin2 � c d� = 1 �40�

leading to the expression of A,
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A =
2

� c3 . �41�

Introducing Eq. �41� in Eq. �38� gives the reflection law, in
Cartesian coordinates,

R�v,v�� =
2

� c3 
w
2, �42�

or, in polar coordinates,

R��,��� =
2

� c
sin2 � . �43�

b. Expression of ��z ,v ,w�.
To derive the diffusion coefficient, the function ��z ,v ,w�,

must be expressed from the reflection laws at z= +L and −L.
In the limit where � tends to zero, the function F, defined by
Eq. �20�, must verify the boundary equation �16�, leading to


w
�−�z,v�q�x,t� = d
w
�+�z,v*�q�x,t� + �1 − d��
�+

R�v,v��

�
w�
�+�z,v�q�x,t�dv�, �44�

where �+ �i.e., �−� is the restriction of � to the set �+ ��−,
respectively�. Introducing Eq. �43� in Eq. �44�, at both limits
of the domain �z= ±L�, the function ��z ,v ,w� must satisfy

��L,v,w� = d ��L,v,− w� + �1

− d�
2

� c

w
�

0

�


sin ��
��L,���d�� �45�

at z= +L �i.e. , w�0�, and

��− L,v,w� = d ��− L,v,− w� + �1 − d�
2

� c

w
�

�

2�


sin ��


���− L,���d�� �46�

at z=−L �i.e. , w
0�. Moreover, since the function ��z ,v ,w�
is independent of the space variable z, the two last relations
lead to

��L,v,− w�w�0 = ��− L,v,w�w
0 �47�

and

��− L,v,− w�w
0 = ��L,v,w�w�0. �48�

Introducing Eqs. �47� and �48� in the boundary conditions
�45� and �46�, respectively, at z= +L and z=−L, gives for
w�0 �i.e., ����2��,

��L,v,w� = d�d��− L,v,− w� + �1 − d�
2

� c

w
�

�

2�


sin ��


���− L,���d��� + �1 − d�

�
2

� c

w
�

0

�


sin ��
��L,���d��, �49�

and for w
0 �i.e., 0�����,

��− L,v,w� = d�d��L,v,− w� + �1 − d�

�
2

� c

w
�

0

�


sin ��
��L,���d���
+ �1 − d�

2

� c

w
�

�

2�


sin ��
��− L,���d��.

�50�

In both Eqs. �49� and �50�, the integrals on the right-hand
side are constants. Then, the function ��z ,v ,w� is only pro-
portional to the normal velocity component 
w
. Separating
the cases w
0 and w�0, the function ��z ,v ,w� can be
written as

��z,v,w� = a+
w
 for w 
 0 �51�

and

��z,v,w� = a−
w
 for w � 0, �52�

where a+ and a− are two constants, which must be calculated.
By introducing Eqs. �51� and �52� in the boundary conditions
�45� and �46� gives, for w�0,

a− = d a+ + a+�1 − d�
2

�
�

0

�

sin2 ��d��, �53�

and, for w
0,

a+ = d a− + a−�1 − d�
2

�
�

�

2�

sin2 ��d��. �54�

This system of equations has only one solution, leading to
a+=a−. Finally, the function ��z ,v ,w� can be written as

��z,v,w� = a+
w
 . �55�

The last equations can be generalized to 
w
k reflection
laws, leading to

��z,v,w� = a+
w
k−1 for w 
 0 �56�

and

��z,v,w� = a+
w
k−1 for w � 0. �57�
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The constant a+ can be found by using the normalization
condition of the function ��z ,v ,w� given by Eq. �21�, which
can now be written �for k=2� as

�
−L

L ��
0

�


sin �
d� + �
�

2�


sin �
d��dz =
1

c2a+
�58�

leading to

a+ =
1

8 L c2 . �59�

c. Expression of D�z ,v ,w�.
The second step of the calculation of the diffusion coeffi-

cient is the determination of the function D�z ,v ,w�, defined
by Eq. �27� in Cartesian coordinates, or by the following
relation in polar coordinates:

sin �
�

�z
D�z,�� =

cos �

8 L c

sin �
 �60a�

=C cos �
sin �
 , �60b�

with the constant parameter C=1/8 L c. By separating the
two cases w
0 and w�0, Eq. �60b� gives

D�z,�� = Cz cos � + A+���, for w 
 0 �61�

and

D�z,�� = − Cz cos � + A−���, for w � 0, �62�

where A+��� and A−��� are constants of integration. The
function D�z ,�� must verify the boundary conditions

D−�z,�� = dD+�z,2� − �� + �1 − d��
�+

R��,���D+�z,���cd��,

�63�

that gives at z= +L �i.e. , w�0�,

D�L,�� = dD�L,2� − �� + �1 − d�
2

�
sin2 ��

0

�

D�L,���d��,

�64�

and at z=−L �i.e. , w
0�,

D�− L,�� = dD�− L,2� − �� + �1 − d�
2

�
sin2�

��
�

2�

D�− L,���d��. �65�

Introducing Eqs. �61� and �62�, in the boundary conditions
�64� yields for w�0,

− CL cos � + A−��� = d�CL cos � + A+����

+ �1 − d�
2

�
sin2 ��

0

�

�CL cos ��

+ A+�����d��, �66�

and gives

A−��� = CL�1 + d�cos � + dA+��� + C1 sin2 � , �67�

where C1 is a constant equal to

C1 = �1 − d�
2

�
�

0

�

�CL cos �� + A+�����d��. �68�

Moreover, introducing Eqs. �61� and �62�, in the boundary
condition �65� yields for w
0,

− CL cos � + A+��� = d�CL cos � + A−����

+ �1 − d�
2

�
sin2 ��

�

2�

�CL cos ��

+ A−�����d��, �69�

leading to

A+��� = CL�1 + d�cos � + dA−��� + C2 sin2 � , �70�

where C2 is a constant defined by

C2 = �1 − d�
2

�
�

�

2�

�CL cos �� + A−�����d��. �71�

The parameter A+ is found by introducing Eq. �67� in Eq.
�70� for w
0,

A+��� = CL
1 + d

1 − d
cos � + C3 sin2 � , �72�

where C3 is a constant equal to

C3 =
dC1 + C2

1 − d2 . �73�

In the same way, for w�0,

A−��� = CL
1 + d

1 − d
cos � + C4 sin2 � , �74�

where C4 is a constant equal to

C4 =
dC2 + C1

1 − d2 . �75�

Thus, introducing Eq. �72� in Eq. �61� and Eq. �74� in Eq.
�62�, the function D�z ,�� must satisfy

D�z,�� = C�z + L
1 + d

1 − d
�cos � + C3 sin2 � , �76�

for 0���� �i.e. , w
0�, and
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D�z,�� = C�− z + L
1 + d

1 − d
�cos � + C4 sin2 � , �77�

for ����2� �i.e. , w�0�.
d. Expression of the diffusion coefficient.
The last step is the derivation of the diffusion coefficient

using the relation �30a�, in polar coordinates,

K =
/

c2 cos �D�z,��dz d� . �78�

Separating the cases 0���� and ����2�, Eq. �78� be-
comes

K = c2�
−L

L �
0

�

cos �D�z,��dz d�

+ c2�
−L

L �
�

2�

cos �D�z,��dz d� . �79�

Introducing Eqs. �76� and �77� in Eq. �79�, the diffusion
coefficient for k=2, is written

K =
�

4

1 + d

1 − d
Lc =

�

4
K , �80�

with

K =
1 + d

1 − d
Lc . �81�

The same developments can also be derived in three di-
mensions, leading to Kuu=Kvv=K and Kuv=Kvu=0, due to
the axisymmetry of the reflection laws. For k=2, the diffu-
sion coefficient is given by

K =
2

3

1 + d

1 − d
Lc =

2

3
K . �82�

These expressions of the diffusion coefficient can easily
be generalized to any value of k
1, by using the same meth-
ods. All expressions are given both in two and three dimen-

sions in Table I.
Table I shows that the diffusion coefficient depends on the

morphology of the building façades. First, in order to calcu-
late the diffusion coefficient, the analytical form of the re-
flection law must be introduced. For 
w
k reflection laws, Fig.
9 shows that the diffusion coefficient, decreases with k. As
expected, when the reflection law concentrates the sound en-
ergy around the normal to the building façades �increasing
k�, the diffusion of sound energy is less important. Second,
as shown by Fig. 10, K increases with the accommodation
coefficient d, meaning that the diffusion of the sound energy
will be faster. In other words, the sound energy is concen-
trated for a longer time in the street and around the sound
source in the case of diffusely reflecting building façades
than in the case of specular reflecting façades. Finally the
diffusion coefficient also increases with the street width �Fig.
10�. For small street width, the sound energy remains a
longer time around the sound source.

D. Sound energy in a street canyon

The previous developments have shown that the sound
energy along the median plane of the street is solution of the
diffusion equation �29� in 2D or �31� in 3D, with the diffu-
sion coefficients given in Table I. Conversely, the sound en-
ergy in a transversal line of the street �along z� is constant.

TABLE I. Two-dimensional �a� and three-dimensional �b� expressions of the diffusion coefficient �in
m2/s�, in a street of width 2L, for building façades defined by 
w
k diffuse reflection laws. d and c are,
respectively, the accommodation coefficient of the building façades and the sound velocity �in m/s�.

�a�

k Two-dimensional diffusion coefficient

2q �for q
1� � /4qq�2q−1���q−1� ! �2��l=1
q−1�2l+1��2K

2q+1 �for q
1� q4q /��2q+1���l=1
q−1l / �2l+1��2K

�b�

k Three-dimensional diffusion coefficient

k
1 K · �k / �k2−1��

FIG. 9. Three-dimensional normalized diffusion coefficient
K /Lc in s, from �b� of Table I, as a function of the accommodation
coefficient d, and for several values of k.
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1. Infinite solution

Considering an impulsive sound source between two infi-
nite planes, the solution of the diffusion equation is then
simply

q�x,y,t� =
1

4 � K t
exp�−

x2 + y2

4 K t
� , �83�

which is the Green function of the diffusion equation. In this
expression, the origin of the coordinates is taken at the sound
source, located in the middle of the median plane.

2. Finite solution

However, in the following numerical simulations �see
Sec. V� as well as in real cases, the street is not infinite.
Openings at the top and both extremities of the street pro-
duce an extra attenuation, due to sound particles absorption,
that must be introduced in the model. In this case, the propa-
gation medium is not defined by two infinite planes, but is
delimited by two finite planes, with a length lx �i.e., the street
length� and height Ly =2ly �twice the street height� due to the
mirror plane created by the pavement �Fig. 4�. Four bound-
ary equations must be considered, one for each extremity of
the propagation medium.

Since it is too difficult to take this absorption into account
in the boundary conditions �12� of the transport equation, the
choice was made to introduce it in the boundary conditions
of the diffusion equation. As in heat transfer problems, an
exchange coefficient h is introduced. It characterizes the en-
ergy exchanges between the exterior and the interior of the
domain �i.e., the sound particles flow�, leading to the follow-
ing equations:

±K�q�x,y,t�
�x

= h q�x,y,t� for x = 0 and lx, ∀ y , �84�

±K�q�x,y,t�
�y

= h q�x,y,t� for y = 0 and Ly, ∀ x .

In the last boundary equations, the origin of the coordi-
nates is located on top of the street �Fig. 4�a��, while the
sound source is still on the pavement �z=0�, in the middle of
the street �i.e., the middle of the median plane� at �x ,y�
= �lx /2 , ly�= �lx /2 ,Ly /2�.

a. Expression of the exchange coefficient.
The exchange coefficient h is defined by writing the flow

J�x ,y ,z , t� of sound particles leaving the propagation me-
dium. At first, considering the definition given in Sec. II C
for the transport phenomena, the sound particles flow can be
written as

Jt�x,y,z,t� = �
�+


v · n
f�x,y,z,u,v,w,t�du dv dw , �85�

for �x ,y���, ∀z and where n is the exterior normal to the
street openings. Since the distribution function
f�x ,y ,z ,u ,v ,w , t� is the product of two functions q�x ,y , t�
and ��z ,u ,v ,w�, the last equation �85� gives, for example, at
x= lx,

Jt = q�lx,y,t��
�+

u ��z,u,v,w�du dv dw . �86�

Moreover, according to the definition of the sound particle
flow �84� in the diffusion behavior, it can also be written as

Jd = − K�q�lx,y,t�
�x

�
�+

��z,u,v,w�du dv dw , �87�

=h q�lx,y,t��
�+

��z,u,v,w�du dv dw . �88�

Then, the diffusion behavior is in agreement with the
transport phenomena, with the condition that Jt=Jd, leading
to

FIG. 10. Three-dimensional normalized diffusion coefficient
K /c, from �b� of Table I, as a function of the accommodation co-
efficient d and the street width 2L �for k=2�.

FIG. 11. �Color online� Example of two-dimensional propaga-
tion of 2000 sound particles in a street �2L=10 m, 
w
2 reflection
law with d=0.5� after 4, 16, 60, 100 and 200 ms. The source is
located in the middle of the street at position �0, 0�.
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q�lx,y,t��
�+

u ��z,u,v,w�du dv dw

= h q�lx,y,t��
�+

��z,u,v,w�du dv dw . �89�

For a wk reflection law, the exchange coefficient can be
derived. Introducing Eq. �51� in Eq. �89�, the exchange co-
efficient h must verify

h�
�+


w
k−1du dv dw = �
�+

u
w
k−1du dv dw . �90�

The integration of both integrals in Eq. �90� gives the
following expression for the exchange coefficient:

h =
kc

�
�

0

�

sin2 �
cos �
k−1d� , �91�

leading, for example, to h=4c /3� for k=2, and h=3c /8 for
k=3. Considering the same development at x=0, y=0, and
y=Ly will give the same expression for h. As expected, the
expression of h is independent of the size of the extremities,
but is a function of the reflection law only.

b. Finite solution of the diffusion equation.
The solution of diffusion equation for a finite medium

with the boundary equations �84� is then �65�,

q�x,y,t� = �
n=1

�

�
m=1

�
an

un

bm

vm
�un cos�unx

lx
� + Bx sin�unx

lx
��

��vm cos�vmy

Ly
� + By sin�vmy

Ly
��exp�−

un
2

lx
2

−
vm

2

Ly
2 Kt� , �92�

where the un and vm are coefficients given by solving the
following equations:

�un
2 − Bx

2�tan un = 2Bxun �93�

and

�vm
2 − By

2�tan vm = 2Byvm, �94�

with Bx=hlx /K and By =hLy /K. For a point source at �x ,y�
= �lx /2 ,Ly /2�, an /un, and bm /vm are given by

an

un
=

2

lx

un cos�un/2� + Bx sin�un/2�
un

2 + Bx
2 + 2Bx

�95�

and

FIG. 12. Standard deviation �from the mean value� of the distri-
bution of the sound particles along a transversal line between the
two planes, for 2L=4 m with the 
w
2 law, at 15 m from the sound
source, and for two accommodation coefficients, �a� d=0 and �b�
d=0.7.

FIG. 13. Standard deviation �from the mean value� of the distri-
bution of the sound particles along a transversal line between the
two planes, for 2L=10 m with the 
w
2 law, at 15 m from the sound
source, and for two accommodation coefficients, �a� d=0 and �b�
d=0.7.
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bm

vm
=

2

Ly

vm cos�vm/2� + By sin�vm/2�
vm

2 + By
2 + 2By

. �96�

In practice, Eqs. �93� and �94� must be numerically solved
in order to determine the un and vm coefficients. These coef-
ficients are then introduced in Eqs. �95� and �96� to calculate
the an and bm coefficients. Finally, the finite solution of the
diffusion equation is computed by considering the first ele-
ments of Eq. �92�.

V. NUMERICAL VALIDATION

A. Introduction

Numerical simulations have been performed to validate
the model for a street canyon. Simulations have been carried
out to test the validity and the sensitivity of the asymptotic
approach. Indeed, the asymptotic development has been re-
alized for a street width tending towards zero. Thus, it is
necessary to test the convergence of the solution and the
limit of the asymptotic approach when the street width in-
creases to realistic values.

B. Principle of the Monte Carlo simulations

The principle of the numerical simulation consists in fol-
lowing the path of sound particles between two parallel
planes �as an infinite street� numerically. Each sound particle

propagates in a straight line between two successive colli-
sions with the parallel planes. At each collision, the new
direction of the sound particle is found by generating a ran-
dom direction in agreement with the reflection law of the
building façades.

At first, considering an omnidirectional sound source lo-
cated between the planes, N sound particles are emitted in
random directions. This is done by generating, for each par-
ticle, two random angles, � and �, between 0 and 2�, and
−� /2 and � /2, respectively. Then, at each sound particle
collision on a plane, a first random number � is generated
and compared to the accommodation coefficient d of the
plane. If ��d, the sound particle is reflected in the specular
direction. Inversely, if ��d, the sound particle is reflected
with a diffuse reflection, according to the diffuse reflection
law of the building façades. For the 
w
k reflection law, the
reflection direction is found by using the rejection method
�66�. If the sound particle crosses the openings, it disappears
from the simulations.

The exact position of the sound particles is calculated for
each time increment �t. A rectangular meshing �x��y
��z is carried out between the planes to follow the sound
particles distribution in the medium as a function of time.
The choice of N, �t, �x, �y, and �z is a compromise be-
tween the calculation time of the numerical simulations and
the temporal and spatial accuracy of the results.

As an example, Fig. 11 shows the numerical results of the
two-dimensional sound propagation of 2000 sound particles
in a street. Similar simulations have also been realized in
three-dimensional streets �i.e., between two planes�.

FIG. 14. Standard deviation �from the mean value� of the distri-
bution of the sound particles along a transversal line between the
two planes, for 2L=4 m with the 
w
4 law, at 15 m from the sound
source, and for two accommodation coefficients, �a� d=0 and �b�
d=0.7.

FIG. 15. Comparison between the analytical solutions and the
numerical distribution of the sound particles, for 2L=4 m with the

w
2 law, at 15 m from the sound source, for two accommodation
coefficients, �a� d=0 and �b� d=0.7.
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C. Validation

1. Uniformity along the z axis

Both in two and three dimensions, the mathematical de-
velopment has shown that the distribution of sound particles
along the z axis is uniform, while the distribution along the
median line �2D� or plane �3D� follows a diffusion process.
The first validation is then to verify this uniformity. Three-
dimensional numerical simulations have been performed for
several configurations of street width �2L=4, 7, and 10 m�,
reflection law �
w
2 and 
w
4� and accommodation coefficient
�d=0 and 0.7�, using 106 sound particles. Since the street is
modelled as two planes with a sound source in the middle of
the median plane, results should be equivalent along the four
semiaxis of the median plane �±x and ±y�. Therefore, nu-
merical simulations have been averaged along these semi-
axes in order to avoid small numerical fluctuations and to
increase the accuracy of the numerical results.

In order to evaluate the uniformity of the sound particles
distribution along the z axis, the mean value n̄ and the stan-
dard deviation � of the number of sound particles were esti-
mated for receivers along the z axis, at several distances from
the sound source and at each time step. As an example, Fig.
12 shows the standard deviation from the mean value �i.e.,
n̄−� and n̄+�� of the number of sound particles with time,
for a receiver located at 15 m from the source, in a street of
width 2L=4 m with the 
w
2 reflection law, and for two ac-
commodation coefficients. For d=0 �Fig. 12�a�, i.e., reflec-
tions are fully diffuse�, the standard deviation is small, sug-

gesting that the distribution of sound particles along the z
axis is in agreement with the theoretical model. When the
accommodation coefficient, increases �Fig. 12�b��, reflec-
tions become more specular and the standard deviation in-
creases principally for larger propagation time. However, nu-
merical results are still in agreement with the model. Similar
conclusions can also be given for receivers closer or further
from the sound source. For larger streets �Fig. 13�, the stan-
dard deviation increases. For d=0 �Fig. 13�a��, results are
still satisfactory, whereas for d=0.7 �Fig. 13�b��, the distri-
bution of sound particles becomes less uniform. As expected,
the analytical model is well adapted for smaller street. Fi-
nally, one can also remark in Fig. 14 that there is more uni-
formity when the reflection law is more distributed around
the normal to the façades.

2. Comparison with the analytical solutions

In addition, Figs. 15,16 and 17 show a comparison be-
tween both infinite and finite solutions, Eqs. �83� and �92�,
and the mean value of the number of sound particles with
time, for a receiver located at 15 m from the source, for
various street width �2L=4 m and 2L=10 m� and reflection
laws �
w
2 and 
w
4�, and for two accommodation coefficients
�d=0 and d=0.7�. As expected with the previous results,
good agreement is observed between the model �particularly
the finite solution� and the numerical simulations, first for
small accommodation coefficients �for example, see Figs.
15�a� and 15�b��, and second when the reflection law is more
concentrated around the normal to the façades �for example,

FIG. 16. Comparison between the analytical solutions and the
numerical distribution of the sound particles, for 2L=10 m with the

w
2 law, at 15 m from the sound source, for two accommodation
coefficients, �a� d=0 and �b� d=0.7.

FIG. 17. Comparison between the analytical solution and the
numerical distribution of the sound particles, for 2L=4 m with the

w
4 law, at 15 m from the sound source, for two accommodation
coefficients, �a� d=0 and �b� d=0.7.
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see Figs. 15 and 16�. However, when the reflection is more
specular �d=0.7 in Figs. 15�a� and 16�a�, for example�, the
model is less in agreement. As seen in Figs. 15�a� and 16�a�,
the model is in better agreement with numerical values for
smaller street width, as expected by the asymptotic approach.
Similar conclusions can also be given for receivers closer or
further from the sound source.

VI. CONCLUSION

In this paper, a general formulation based on the transport
of sound particles is proposed for sound field modeling in
architectural acoustics. By using this approach, the spatial
and temporal evolution of the sound field in an enclosure
with complex boundary conditions can be analytically ex-
pressed. For street canyons, the transport equation can be
reduced to a diffusion equation, whose diffusion coefficient
is defined from the street size and the reflection law of the
building façades.

The analytical model has been compared to numerical
simulations of sound particles propagation in street canyon,
for several reflection laws of the building façades, accommo-
dation coefficient and street width. As expected by the choice
of the asymptotic approach, the model is in agreement with
numerical simulations, especially for smallest street widths,
and when diffuse reflections are concentrated around the nor-
mal to the building façades. However, when the street width
increases or when the reflection law is close to a specular
reflection, the diffusion model fails.

Moreover, the finite solution, including the sound par-
ticles absorption at the open top and both extremities of the
street, gives better agreement with the numerical solution
than the infinite solution. When the street width decreases
and when diffuse reflections are concentrated around the nor-

mal, both infinite and finite solutions give equivalent results.
This approach is an interesting way to model the sound

field in architectural acoustics, especially when the limits of
the domain produce both specular and diffuse reflections. In
the present model, diffuse reflections can be taken into ac-
count by considering any kind of reflection law, while most
of current analytical and numerical models consider Lam-
bert’s law of reflection only. Although models with Lam-
bert’s law can give satisfactory results, recent studies seem to
show that the choice of the reflection law can influence the
sound attenuation and the reverberation in an enclosure or in
a street �67�. Therefore, other approaches must be consid-
ered, as the one presented in this paper.

At this stage, and in order to have a more useful model,
the sound absorption by the building façades, the pavement,
and the openings should now be included in the approach.
On the other hand, two different reflection laws on both sides
of the street should be also considered. In the long term, by
using this mathematical approach, many others develop-
ments can also be introduced. Thus, by considering a scat-
tering kernel, it could be possible to take the multiple scat-
tering by diffusers filling an enclosure into account.
Meteorological effects can also be analytically included in
the model. For example, wind, whose effect can be important
in urban areas, could be introduced by considering a trans-
port force in the transport equation. Atmospheric attenuation
can be included by considering a new probabilistic term,
which would express the probability that a sound particle
may disappear during its propagation. Last, complex con-
figurations with atmospheric turbulence could be studied by
considering the coordinate dependence of the sound particle
velocity in the derivation of the transport equation and in its
resolution.

�1� R. H. Lyon, J. Acoust. Soc. Am. 55, 493 �1974�.
�2� M. Hodgson, J. Acoust. Soc. Am. 89, 765 �1991�.
�3� J. Kang, J. Acoust. Soc. Am. 107, 1394 �2000�.
�4� R. R. Torres, Acust. Acta Acust. 86, 919 �2000�.
�5� H. G. Davies and R. H. Lyon, J. Acoust. Soc. Am. 54, 1565

�1973�.
�6� R. Bullen and F. Fricke, J. Sound Vib. 54, 123 �1977�.
�7� R. Bullen and F. Fricke, J. Sound Vib. 46, 33 �1976�.
�8� V. Markovic, Acust. Acta Acust. 84, 570 �1998�.
�9� B. I. Dalenbäck, M. Kleiner, and P. Svensson, J. Audio Eng.

Soc. 42, 793 �1994�.
�10� H. Kuttruff, Room Acoustics �Applied Science Publishers,

London, 1973�.
�11� P. M. Morse and K. U. Ingard, Theoretical Acoustics

�McGraw-Hill, New York, 1968�.
�12� L. Cremer and H. A. Müller, Principle and Applications of

Room Acoustics �Applied Science Publishers, London, New
York, 1982�, Vol. 1.

�13� M. Hodgson, J. Acoust. Soc. Am. 84, 253 �1988�.
�14� M. Hodgson, J. Acoust. Soc. Am. 94, 835 �1993�.
�15� J. B. Allen and D. A. Berkley, J. Acoust. Soc. Am. 65, 943

�1979�.
�16� H. Juricic and F. Santon, Acustica 28, 77 �1973�.
�17� J. Borish, J. Acoust. Soc. Am. 75, 1827 �1984�.
�18� D. G. Holmes and R. H. Lyon, in Second Interagency Sympo-

sium on University Research in Transportation Noise �North
Carolina State University, Raleigh, 1974�.

�19� M. Vorländer, J. Acoust. Soc. Am. 86, 172 �1989�.
�20� A. Kulowski, Appl. Acoust. 18, 449 �1985�.
�21� A. Krokstad, S. Strom, and S. Sorsdal, J. Sound Vib. 8, 118

�1968�.
�22� T. Lewers, Appl. Acoust. 38, 161 �1993�.
�23� H. Kuttruff, Acustica 25, 333 �1971� �in German�.
�24� H. Kuttruff, Acustica 35, 141 �1976� �in German�.
�25� M. M. Carroll and R. N. Miles, J. Acoust. Soc. Am. 64, 1424

�1978�.
�26� H. Kuttruff and T. Straßen, Acustica 45, 246 �1980� �in Ger-

man�.
�27� T. Hidaka, in CIARM’95 2nd International Conference on

Acoustics and Musical Research �CIARM, Ferrara, 1995�, pp.
11–22.

�28� J. J. Embrechts, D. Archambeau, and G. Stan, Acust. Acta

LE POLLÈS et al. PHYSICAL REVIEW E 72, 046609 �2005�

046609-16



Acust. 87, 482 �2001�.
�29� H. Kuttruff, Acustica 18, 131 �1967� �in German�.
�30� E. A. Lindqvist, Acustica 50, 313 �1982�.
�31� E. A. Lindqvist, Appl. Acoust. 16, 183 �1983�.
�32� R. Bullen and F. Fricke, J. Sound Vib. 80, 11 �1982�.
�33� K. Li and M. Hodgson, J. Sound Vib. 218, 463 �1998�.
�34� U. J. Kurze, J. Sound Vib. 98, 349 �1985�.
�35� H. Imaizumi, S. Kunimatsu, and T. Isei, J. Acoust. Soc. Am.

108, 632 �2000�.
�36� J. Kang, Acustica 82, 509 �1996�.
�37� H. G. Davies, J. Acoust. Soc. Am. 53, 1253 �1971�.
�38� H. Kuttruff, J. Acoust. Soc. Am. 69, 1716 �1981�.
�39� H. Nélisse and J. Nicolas, J. Acoust. Soc. Am. 101, 3517

�1997�.
�40� A. M. Ondet and J. L. Barbry, J. Acoust. Soc. Am. 85, 787

�1989�.
�41� S. M. Dance, Appl. Acoust. 63, 359 �2002�.
�42� H. G. Davies, J. Acoust. Soc. Am. 64, 517 �1978�.
�43� P. R. Donavan, Ph.D. thesis, Massachusetts Institute of Tech-

nology, Cambridge, 1976.
�44� W. B. Joyce, J. Acoust. Soc. Am. 58, 643 �1975�.
�45� J. L. B. Coelho, Acust. Acta Acust. 86, 903 �2000�.
�46� W. B. Joyce, Phys. Rev. D 9, 3234 �1974�.
�47� L. de Broglie, La thermodynamique de la Particule Isolée

�Gauthiers-Villars, Paris, 1964�.
�48� R. Hakim, Mécanique �Armand Colin, Paris, 1995�.
�49� M. M. R. Williams, Mathematical Methods in Particle Trans-

port Theory �Butterworth, London, 1971�.
�50� A. M. Weinberg and E. P. Wigner, The Physical Theory of

Neutron Chain Reactors �The University of Chicago Press,
Chicago, IL, 1958�.

�51� H. L. Frisch, Phys. Rev. 107, 917 �1957�.
�52� I. Prigogine, Non-Equilibrum Statistical Mechanics, �Inter-

sciences, New York, 1962�, Vol. 1
�53� Y. W. Lam, J. Acoust. Soc. Am. 105, 762 �1999�.
�54� M. Vorländer and E. Mommertz, Appl. Acoust. 60, 187

�2000�.
�55� C. Cercignani, Theory and Application of the Boltzmann Equa-

tion �Academic, London, 1975�.
�56� H. Babovsky, C. Bardos, and T. Platkowski, Asymptotic Anal.

3, 265 �1991�.
�57� C. Börgers, C. Greengard, and E. Thomann, SIAM J. Appl.

Math. 52, 1057 �1992�.
�58� D. Gaulin, Ph.D. thesis, Université du Maine, 2000.
�59� J. Kang, Acust. Acta Acust. 88, 77 �2002�.
�60� D. Oldham and M. Radwan, Build. Acoust. 1, 65 �1994�.
�61� J. Picaut and M. Bérengier, INTERNOISE 2001, The 2001

International Congress and Exhibition on Noise Control Engi-
neering, The Hague, Holland, August 2001.

�62� T. Le Pollès, Ph.D. thesis, Université du Maine, 2003.
�63� J. Picaut, J. Hardy, and L. Simon, Phys. Rev. E 60, 4851

�1999�.
�64� J. Picaut, J. Hardy, and L. Simon, J. Acoust. Soc. Am. 106,

2638 �1999�.
�65� J. Picaut, L. Simon, and J.-D. Polack, Appl. Acoust. 56, 217

�1999�.
�66� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Man-

nery, Numerical Recipes in FORTRAN 77, the Art of Scientific
Computing �Cambridge University Press, Cambridge 1992�.

�67� J. Picaut, INTERNOISE 2004, The 33rd International Con-
gress and Exposition on Noise Control Engineering, Prague,
Czech Republic, August 2004.

SOUND-FIELD MODELING IN ARCHITECTURAL… PHYSICAL REVIEW E 72, 046609 �2005�

046609-17


